Negative methane is the Ion of methane, meaning that a neutral methane molecule captured an extra electron and became an ion with a total negative electric charge: CH4−. This kind of ion is also known as anion and are relevant in nature because negative ions have been observed to have important roles in several environments. For instance, they are confirmed in the Outer space, in plasma, in the atmosphere of Earth and, in the ionosphere of Titan. Negative ions also hold the key for the radiocarbon dating method
Negative ions can not be described with conventional atomic theory. Quantum mechanical models, including more factors than solely Coulomb attraction, have to be considered to explain their stability. Such factors are Coulomb potential screening and electron correlation.
Negative ions are Metastability because they decay over time, releasing the extra electron. Therefore, they can act as time-dependent-sources of thermal electrons (low energy) in plasma environments. Negative ion's ubiquitous presence in the interstellar medium, for example, prompts the question of an efficient formation mechanism since they are expected to decay over time. In addition, their extra electron is in general weakly attached to its neutral core and as a consequence, it is also expected to lose the additional electron with a large probability, prompting again the question of the mechanism of its formation.
Second, in chemistry, methane is the molecular Isoelectronicity analogous to neon gas. Since neon does not have a known stable negative ion state, methane was not expected to support an extra electron either.
However, its molecular nature allows more degrees of freedom that allow for the formation of a negative ion. By a change of its nuclear configuration to form a Feshback negative ion resonance in which the electrons or nuclei of the molecule can re-arrange to form an excited state capable of supporting the extra electron.
The findings of that report (an experiment) are consistent with a quantum chemistry model in which it was found that its stable configuration corresponds to a linear molecular exciplex (CH2:H2)− which showed stability in the timescale of hundreds of Picosecond. However, the experiment of 2014 demonstrated stability over the larger timescale of Microsecond, and therefore, perfectly fitted to be detected by standard mass spectrometry techniques.
The mechanism of formation of CH4− is not fully understood. However, it can be elucidated that it may form under high methane density conditions and, probably, a three body collision.
In the case of CH4−, dissociation into CH2− + Hydrogen is more likely than releasing the extra electron, therefore, the conventional definition of Eea does not apply to methane. The energy difference between CH4− and CH2− + H2, is 0.85 kcal/mol according to the available theoretical model.
|
|